Simulation of particle deposition at the bottom surface in a room-scale chamber with particle injection

نویسندگان

  • N. Zhang
  • Z. Charlie Zheng
  • B. Braley
چکیده

An Euler-type gas/particle two-phase flow numerical model is presented for simulating the deposition of particles of tens of microns. At this size range of particles, the dominant effect considered for deposition on the bottom surface is gravitational settling. The mass conservation equation for the particulate phase is developed and simulated to include convection, diffusion, and gravitational settling effects. Experiments were conducted in a room-scale chamber by injecting nano-particle aggregates, and the deposition rates were measured using a specially designed sequential sampler. The measured deposition-rate data are compared with the simulation results for validations. Distributions of particle-number density at different times are plotted in several viewing planes to facilitate discussion of the particle-distribution patterns. The comparisons show that the agreement between the modeling and the measurement is best at the intermediate particle-size range. 2009 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eulerian Lagrangian Simulation of Particle Capture and Dendrite Formation on Binary Fibers

The capture efficiency of the small aerosol particle is strongly influenced by the structure of fibrous layers. This study presents particle deposition and dendrite formation on different arrangements of binary fibers. 2-D numerical simulation is performed using the open source software of OpenFOAM. In the instantaneous filtration of a single fiber, obtained results are in good agreement with th...

متن کامل

Three-Dimensional Simulation of Airflow and Nano-Particle Beam Focusing in Aerodynamic Lenses(RESEARCH NOTE)

In this paper airflow, nano-and micro-particle motions in an aerodynamic particle beam focusing system consisting of several lenses, a nozzle and the downstream chamber, was studied. A three-dimensional numerical simulation for the system was presented and the compressible airflow and thermal conditions in the aerodynamic lens system were evaluated. Dilute particle concentration was assumed so ...

متن کامل

احتراق ذرات سوخت زیست‌توده در یک واحد تولید همزمان توان و حرارت مقیاس کوچک

Increasing energy cost and reduction of fossil fuel resources have been resulted in increasing demand of renewable energy, such as micro biomass particles in small scale Stirling engines to generate combined heat and power. In such Stirling engines, biomass particles are burnt in external combustion chamber and then, the generated heat is transferred to the working fluid of the engine cycle. Th...

متن کامل

Two-dimensional Simulation of Mass Transfer and Nano-Particle Deposition of Cigarette Smoke in a Human Airway

The chance of developing lung cancer is increased through being exposed to cigarette smoke illustrated by studies. It is vital to understand the development of particular histologic-type cancers regarding the deposition of carcinogenic particles, which are present in human airway. In this paper, the mass transfer and deposition of cigarette smoke, inside the human airway, are investigated apply...

متن کامل

Influence of electroplating parameters on microstructure and amount of ceramic particle deposition in Ni-Co-CeO2-ZrO2 composite coating

Austenitic stainless steels are high performance steels that have various applications in solid oxide fuel cells and boiler tubes under high temperature operating conditions. The Cr2O3 oxide layer formed on the steel surface becomes unstable at high temperatures and reduces the oxidation resistance of the steel. Therefore, protection of these steels at high temperatures is essential. Therefore,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010